Center of Research in Astronomy, Astrophysics and Geophysics (Algiers Observatory)

Analysis of a new stellar occultation by asteroids among Algeria territory

Presented by : **BABA AISSA Djounai** Associate Researcher in Astronomy – CRAAG <u>baba.aissa.djounai@gmail.com</u>; d.babaaissa@craag.dz; djounai.babaaissa@craag.edu.dz

ESOP XL, Bialystok (Poland), August 2021

Outline

- Introduction
- Positive stellar occultation by NEA PHA 3200 Phaethon
- Discovery of stellar duplicity during asteroidal occultation by 283 Emma
- Participative Astronomy occultation in Algeria
- Study of stellar occultation by Near Earth Asteroids
- Near Futur prospects
- Summary

Positive stellar occultation by NEA PHA 3200 Phaethon

Position 2 Telescope Celestron 8 Geographic Coordinates Latitude : 36°09'48,95" N Longitude : 02°22'26,74" E Elevation : 398 m BABA AISSA Djounai

Position 3 Telescope Celestron 11 Geographic Coordinates Latitude : 36°09'10,15" N Longitude : 02°21'29,43" E Elevation : 470 m GRIGAHCENE Zaki

© 2018 Google Image © 2019 CNES / Airbus Image © 2019 Maxar Technologies Aïn Lechlakh

(())

Position 1

Telescope Celestron 8 Geographic Coordinates Latitude : 36°08'54,21" N Longitude : 02°24'03,90" E Elevation : 470 m DAHMANI DELLA Mohamed

.24"E élév. 443 m

altitude 6.77 km 🔘

i uvs191015-006.lc - Aperture Photometry, Average Background

ESOP XL, Bialystok (Poland), August 2021

Signal-minus-Background 👻 No Normalisation 👻 No Binning 👻 🏹 Include Objects 👻

and a second second

3200 Phaethon occults TYC	2 3268-00276-1 on 2019 Oct 25 from 22h 17m to 22h	1 26m UT
Star:	Max Duration = 0.2 secs	Asteroid: (in DAMIT, ISAM)
Mag V = 11.3; B = 12.5; R = 10.6	Mag Drop = 5.6 (5.8r)	Mag = 16.8
RA = 1 15 58.7003 (BCRS)	Sun : $Dist = 144^{\circ}$	Dia = 5km, 0.007"
Dec = 46 53 0.815	Moon: Dist = 127°	Parallax = 9.016"
[of Date: 1 17 10, 46 59 17]	: illum = 7 %	Hourly dRA =-8.878s
Prediction of 2019 Aug 31.0	E 0.007"x 0.003" in PA 32	dDec =-75.13"
Prediction of 2019 Aug 31.0	E 0.007"X 0.003" in PA 32	dDec =-/5.13"

Khouriba

Hai El Amir

cité Emir Abdelkader

Position 2 Telescope Celestron 8 Geographic Coordinates Latitude : 35° 00' 56,64'' N Longitude : 01° 45' 28,14'' W Elevation : 258 m BABA AISSA Djounai

200

Position 1 Telescope Celestron 11 Geographic Coordinates Latitude : 35° 00' 51,98'' N Longitude : 01° 45' 15,40'' W Elevation : 325 m GRIGAHCENE Zaki Auberge Nutroma

199

Nedroma

Stor

Image © 2019 Maxar Technologies Image © 2019 Maxar Technologies Date des images satel

© 2018 Google

2007

El Assa

OOO C ea

°45'54.92"O élév. 245 m altitude 4.68 km

i uvs191025-002.lc - Aperture Photometry, Average Background

Signal-minus-Background - No Normalisation - No Binning - MI Include Objects -

10

ESOP XL, Bialystok (Poland), August 2021

DECOMPOSITION OF

(3200) PHAETHON, FIRST SUCCESSFUL OBSERVATIONS OF OCCULTATIONS BY A SMALL NEAR-EARTH OBJECT Paper 2062

Asteroid Science in the Age of Hayabusa2 and OSIRIS-REx, Tucson, Arizona, 2019 November

D. W. Dunham^{1&2}, J. B. Dunham¹, M. Buie³, S. Preston¹, D. Herald¹, D. Farnocchia⁴, J. Giorgini⁴, J. Irwin¹,
D. Breit¹, L. Wasserman⁵, S. Marshall⁶, T. Arai⁷, I. Sato⁸, H. Noda⁹, M. Sôma⁹, J. Moore¹, S. Degenhardt¹,
R. Nolthenius^{1,10}, A. Verbiscer¹¹, M. Skrutskie¹¹, M. Nelson¹¹, P. Tanga¹², J. Ferreira¹², D. Vernet¹², J.P. Rivet¹², E. Bondoux¹², E. Frappa¹³, T. Haymizu¹⁴, Q. Ye¹⁵, D. Baba Aissa¹⁶, Z. Grigahcene¹⁶

¹International Occultation (IOTA, P. O. Box 423, Greenbelt, MD 20768, USA, iotatreas@yahoo.com), ²KinetX Aerospace (david.dunham@kinetx.com), ³Southwest Research Inst., Boulder, CO, ⁴Jet Propulsion Lab., ⁵Lowell Obs., ⁶Arecibo Obs., ⁷Planetary Exploration Res. Ctr. (PERC), Chiba Inst. of Tech., Japan ⁸PERC collaborator, ⁹Japanese National Astronomical Obs., ¹⁰Cabrillo College, Santa Cruz, CA, ¹¹Univ. of Virginia, ¹²Obs. de la Côte d'Azur, ¹³www.euraster.net, ¹⁴Saga Hoshizora Astron. Ctr., Japan, ¹⁵Caltech, ¹⁶Algiers Obs. - CRAAG

OP*> alsstok (Poland), August 2021

Updated 2019 November 5 pm

Publication of the scientific article about the observation of the stellar occultation by the satellite Triton in October 5th, 2017 In Astronomy & Astrophysics journal, 2021

Astronomy & Astrophysics manuscript no. output May 31, 2021

Structure and evolution of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

J. Marques Oliveira¹, B. Sicardy¹, A. R. Gomes-Júnior^{2,3}, J. L. Ortiz⁴, D. F. Strobel⁵, T. Bertrand^{1,6}, F. Forget⁷, E. Letlouch¹, J. Desmars^{8,9}, D. Bérard¹, A. Doressoundiram¹, J. Lecacheux¹, R. Leiva^{10,11}, E. Meza^{12,13}, F. Roques¹, D. Souami^{1,14}, T. Widemann¹, P. Santos-Sanz⁴, N. Morales⁴, R. Duffard⁴, E. Fernández-Valenzuela^{15,4}, A. J. Castro-Tirado⁴, F. Braga-Ribas^{16, 1, 17, 3}, B. E. Morgado^{17, 1, 3}, M. Assafin^{18, 3}, J. I. B. Camargo^{17, 3}, R. Vieira-Martins^{17,3,9}, G. Benedetti-Rossi^{1,3,2}, S. Santos-Filho^{18,3}, M. V. Banda-Huarca^{17,3}, F. Quispe-Huaynasi¹⁷, C. L. Pereira^{17,3}, F. L. Rommel^{17,3}, G. Margoti¹⁶, A. Dias-Oliveira¹⁹, F. Colas⁹, J. Berthier⁹, S. Renner^{9,20}, R. Hueso²¹, S. Pérez-Hoyos²¹, A. Sánchez-Lavega²¹, J. F. Rojas²¹, W. Beisker⁴, M. Kretlow^{22, 23}, D. Herald^{24, 25}, D. Gault²⁴, K.-L. Bath^{22, 23}, H.-J. Bode^{22, 23, *}, E. Bredner^{23, 26, 27, 28}, K. Guhl^{29, 23}, T. V. Haymes^{30, 23}, E. Hummel²³, B. Kattentidt²³, O. Klös²³, A. Pratt^{23,30}, B. Thome²³, C. Avdellidou³¹, K. Gazeas³², E. Karampotsiou³², L. Tzouganatos³², E. Kardasis³³ A. A. Christou³⁴, E. M. Xilouris³⁵, I. Alikakos³⁵, A. Gourzelas³⁵, A. Liakos³⁵, V. Charmandaris^{36, 37}, M. Jelínek³⁸, J. Štrobl³⁸, A. Eberle³⁹, K. Rapp³⁹, B. Gährken⁴⁰, B. Klemt⁴¹, S. Kowollik⁴², R. Bitzer⁴², M. Miller⁴³, G. Herzogenrath⁴³, D. Frangenberg⁴³, L. Brandis⁴³, I. Pütz⁴³, V. Perdelwitz^{44, 45}, G. M. Piehler⁴⁶, P. Riepe^{26, 47}, K. von Poschinger⁴⁸, P. Baruffetti⁴⁹, D. Cenadelli⁵⁰, J.-M. Christille⁵⁰, F. Ciabattari⁵¹, R. Di Luca⁵², D. Alboresi⁵², G. Leto⁵³, R. Zanmar Sanchez⁵³, P. Bruno⁵³, G. Occhipinti⁵³, L. Morrone⁵⁴, L. Cupolino⁵⁵, A. Noschese⁵⁶, A. Vecchione⁵⁶, C. Scalia^{57,58,53}, R. Lo Savio⁵⁷, G. Giardina⁵⁷, S. Kamoun⁵⁹, R. Barbosa⁶⁰, R. Behrend⁶¹, M. Spano⁶², E. Bouchet⁶³, M. Cottier⁶³, L. Falco⁶⁴, S. Gallego⁶⁵, L. Tortorelli⁶⁶, S. Sposetti⁶⁷, J. Sussenbach⁶⁸, F. Van Der Abbeel⁶⁹, P. André⁷⁰, M. Llibre⁷⁰, F. Pailler⁷⁰, J. Ardissone⁷¹, M. Boutet⁷², J. Sanchez⁷², M. Bretton⁷³, A. Cailleau⁷⁴, V. Pic⁷⁴, L. Granier⁷⁴, R. Chauvet⁷⁵, M. Conjat⁷⁶, J. L. Dauvergne⁷⁷, O. Dechambre⁷⁸, P. Delay^{79,80}, M. Delcroix⁸¹, L. Rousselot⁸¹, J. Ferreira^{82,10}, P. Machado⁸², P. Tanga¹⁰, J.-P. Rivet¹⁰, E. Frappa⁸³, M. Irzyk⁸⁴, F. Jabet⁸⁵, M. Kaschinski⁸⁶, A. Klotz⁸⁷, Y. Rieugnie⁸⁸, A. N. Klotz^{89,90}, O. Labrevoir⁹¹, D. Lavandier⁹², D. Walliang⁹², A. Leroy⁹³, S. Bouley⁹⁴, S. Lisciandra^{95,**}, J.-F. Coliac^{95,96}, F. Metz⁹⁷, D. Erpelding⁹⁷, P. Nougayrède⁹⁷, T. Midavaine²⁷, M. Miniou⁹⁸, S. Moindrot⁹⁹, P. Morel^{100,101} B. Reginato¹⁰², E. <u>Reginato^{103,104}, J. Rudelle¹⁰⁵, B. Tregon¹⁰⁶</u>, R. Tanguy¹⁰⁷, J. David¹⁰⁷, W. Thuillot⁹, D. Hestroffer⁹, G. Vaudescal¹⁰⁸, D. Baba Aissa¹⁰⁹, Z. Grigahcene¹⁰⁹, D. Briggs^{110,30}, S. Broadbent^{110,30,111}, P. Denyer³⁰, N. J. Haigh³⁰, N. Quinn³⁰, G. Thurston^{30,112}, S. J. Fossey¹¹³, C. Arena¹¹³, M. Jennings¹¹⁴, J. Talbot¹¹⁵, S. Alonso¹¹⁶, A. Román Reche¹¹⁷, V. Casanova⁴, E. Briggs¹¹⁸, R. Iglesias-Marzoa^{119,120}, J. Abril Ibáñez¹¹⁹, M. C. Díaz Martín¹¹⁹, H. González¹²¹, J. L. Maestre García¹²², J. Marchant¹²³, I. Ordonez-Etxeberria¹²⁴, P. Martorell¹²⁴, J. Salamero¹²⁴, F. Organero¹²⁵, L. Ana¹²⁵, F. Fonseca¹²⁵, V. Peris¹²⁶, O. Brevia¹²⁶, A. Selva¹²⁷, C. Perello¹²⁷, V. Cabedo¹²⁸, ¹²⁹, R. Gonçalves¹³⁰, M. Ferreira¹³¹, F. Marques Dias¹³², A. Daassou¹³³, ¹³⁴, K. Barkaoui¹³⁴, ¹³⁵, Z. Benkhaldoun¹³⁴, M. Guennoun¹³⁶, J. Chouqar¹³⁴, E. Jehin¹³⁷, C. Rinner¹³⁸, J. Lloyd¹³⁹, M. El Moutamid¹⁴⁰, C. Lamarche¹⁴¹, J. T. Pollock¹⁴², D. B. Caton¹⁴², V. Kouprianov¹⁴³, ¹⁴⁴, B. W. Timerson^{25,***}, G. Blanchard¹⁴⁵, B. Payet¹⁴⁶, A. Peyrot¹⁴⁶, J.-P. Teng-Chuen-Yu¹⁴⁶, J. Françoise¹⁴⁷, B. Mondon¹⁴⁷, T. Payet¹⁴⁷, C. Boissel¹⁴⁸, M. Castets¹⁴⁹, W. B. Hubbard¹⁵⁰, R. Hill¹⁵⁰, H. J. Reitsema¹⁵¹, O. Mousis¹⁵², L. Ball¹⁵³, G. Neilsen¹⁵³, S. Hutcheon¹⁵³, K. Lav^{153,****}, P. Anderson¹⁵³, M. Moy^{153,†}, M. Jonsen¹⁵⁴, I. Pink¹⁵⁴, R. Walters^{154,‡}, and B. Downs¹⁵⁵

(Affiliations can be found after the references)

Received mm:dd, yyyy; accepted mm:dd, yyyy

ABSTRACT

Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and USA. We derived 90 light curves from this event, 42 of them yielding a central flash detection.

Aims. We aim at constraining Triton's atmospheric structure and the evolution of its atmospheric pressure since the Voyager 2 epoch (1989). We also derive the shape of the lower atmosphere from central flash analysis.

Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range $\sim 8 \text{ km}$ to $\sim 190 \text{ km}$, corresponding to pressure levels from 9 μ bar down to a few nbar.

Results. (i) A pressure of $1.18 \pm 0.03 \mu$ bar is found at a reference radius of 1400 km (47-km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high SNR light curves and data accessible for reanalysis. If there were any enhancement in surface pressure during this time period it would have been modest as the Volatile Transport Models that we examined do not support a strong increase in surface pressure. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness. Article number, page 1 of 44

ESOP XL, Bialystok (Poland), August 2021

Use \titlerunning to supply a shorter title and/or \authorrunning to supply a shorter list of authors.

After reduce data light Curve processed and normalized

Special thanks for Bruno Sicardy and Mike Kretlow

Eminent publication of a scientific article about the observation of a stellar occultation by the satellite Hi'iaka in April 6th, 2021

Illustration of the dwarf planet (136108) Haumea which has a dusty ring around and two satellites (Hi'iaka and Namaka)

DPS 53 Site

7/19/21, 15:57

Abstract Type	Research Contributed Presentations
Presentation Type	Oral
Discussion Preference	Slack + Live
Category	Centaurs and Kulper Belt Objects: Physical Characterization
Student Status	Not a student
is this a dissertation abstract?	No
Newsworthy	Yes
Please Indicate the publication status of this work	Not yet submitted to a Journal
Which journal are you publishing this work in (or do you hope to publish this work in)?	Nature Astronomy
Have you posted a preprint about this work on arXIv.org?	No

Physical properties of Hi'iaka from stellar occultation data

Estela Femândez-Valenzuela¹, Jose Luis Ortiz Moreno², Bryan Holler³, Monica Vara-Lubiano³, Nicolas Morales², Bruno Sicardy⁴, Frederic Vachler⁵, Josseiln Desmars^{5,6}, Felipe Braga-Ribas^{6,7}, Zafar Rustamkiuo⁴, Alex de la Vega³, Elizabeth Warner¹⁰, Roxanne Kamin¹, A Ryan¹¹, Bernie Estel¹¹, Dennis Conti¹², Francin Richard⁹, Philp Langli¹⁴, Ruben Morales¹⁴, Emmanuel Jehn¹⁷, Wesley Fraser⁶, Damy Soum⁴, Jean Leacheurd⁴, Pablo Santos-Garaz², Ren Dut**fard²**, Alaxo Abasez-Canada¹², Tikke Kestlor⁶, Catsavo Benedetti-Ross¹⁷, Bruno Morgado¹⁷, Julio Camargo¹⁷, Flavia L. Rommel¹⁷, Altair Ramos Gomes Junior¹⁷, Marceio Assafin¹, Djounal Baba Alssa¹⁹, Zaki Grigahoene¹⁹, Marc Bule²⁰, Javier Licandro²¹, Miguel Rodriguez-Alaron²¹, Miguel Sera²¹, Alberto Castor-Tirado², Emilio Jesus Fernandez-Carcia², RaMand Jesles-Marces²², Franelose Gainde²², Luis Defrez²⁴, Hugo González²⁴ Pablo Canedo²⁵, Oscar Blanco²⁷, Aul Gonçales²⁴, Adam Rengstor⁴⁷, Randy Flym²⁴, Aart Olser²⁰, Bill Hanna³⁰, Jason Banes³¹, Joseph A. H'Hearn³¹, Steven M. Kreyche³¹, Will² Allier J. Lillian E. Mortensen³¹, Thomas C. Gilson³¹, Gary Waller²⁰, Gregory A. Feiden³³, Osceph Trotesche¹³, Scott Fisher³⁴, Alton

Luken³⁴, Eric Holcomb³⁴, Daniel Caton³⁵, Bob Dunford³⁶

¹Flords Space Institute (UCF), Ortando, FL, ²Instituto de Astrofisica de Andalucia - CSIC, Granada, ³Space Telescope Science Institute, Baltimore, MD, ⁴Oos. de Paris, Neudon, ⁵Institut de mécanique deleste et de calcul des éphemérides, University of Paris, Paris, ⁶Institut, Ed mécanique deleste et de calcul des éphemérides, University of Paris, Paris, ⁶Institut, Ed mécanique deleste et de calcul des éphemérides, University of Paris, Paris, ⁶Institut, Ed Bustoner, MD, ⁴Oos. de Paris, Neudon, ⁵Institut de mécanique deleste et de calcul des éphemérides, University of Paris, Paris, ⁶Institut, Ed Bustoner, MD, ¹Oos. de Paris, Neudon, ⁵Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, ¹Ounversity of Lagy, Lagy, ¹Lagy, Calgar, A.B., ⁶University of Lagy, <u>Legy, ¹Lagy, Legy, ¹Lagy, ^{</u>}

Two very bright stelar occultations by Hitaka, the largest satellite of the dwarf planet Haumea, were predicted to take place during the last Spring. Since the uncertainty on Hitakas shadow path was large due to uncertainty on Hitakas (begins) acruary astronetic data of Hitaka's contain round Haumea. The astrometric data allowed us to successfully observe the first stelar occultation on April 16th. With final path crossing North Africa. We only obtained one positive chord in this event from TRAPPIST-North telescope at Oukalmedon Observatory (Morocco), but thanks to this detection, we were able to obtain a more accurate path for the second one on April 16th. The second shadow path was predicted to cross the continential US from East to West. We carried out a huge observatorial campaign involving more than 50 professional and anateurs observatores along the US and the South of Canada. The final path of this second shedow were able to obtain 5 positive chords only from the second shedow path was predicted to cross the continential US from East to West. We carried out a huge observatorial campaign involving more than 50 professional and anateurs observatories along the US and the South of Canada. The final path of this second shellar occultation moved sightly to the North of the predicted path and, as a result, we were able to obtain 5 positive chords and ngatives chords only from the south of the shadow. We also collected pothormetric data in order to obtained by observed system of Haumea-Hitaka and removing Haumea's rotational light-curve from the data. Using Hitaka's rotational light-curve we obtained the rotational path second stellar occultation tok piace, and allowed us to obtain a thread-dimensional model of the satellite. Preliminary results from the detain coultation has a result or professional and path censes of stellar occultation has a lange to us to obtain a thread-dimensional model of the satellite. Preliminary results from the detalian coultation hase at which each stellar occultation tok piace,

ESOP XL, Bialystok (Poland), August 2021

Satellites: 11 HDOP: 0.93 UTC: 23:39:38 2021-04-06 Latitude: 3319.5756 N Longitude: 00307.8094 E Altitude: 801.0 M MSL WGS84 separation: 38.5 M

CPU clock 999992 Hz Err Transient vSync 20000 CPU us External PAL Fullscreen Last used 23h 2021-04-06 Satellites: 10 HDOP: 0.90 UTC: 20:40:12 2021-04-06 Latitude: 3229.0942 N Longitude: 00341.1941 E Altitude: 557.8 M MSL WGS84 separation: 36.2 M

CPU clock 1000008 Hz Err Transient vSync 20000 CPU us External PAL TVsafe Last used 03h 20101-235-242

Team 1 in Bellil (Laghouat) 480 km south of Algiers

Team 2 in Ghardaia 600 km south of Algiers

ESOP XL, Bialystok (Poland), August 2021

ESOP XL, Bialystok (Poland), August 2021

ESOP XL, Bialystok (Poland), August 2021

mal 1

Lesson barnen and the and

COMPAN

Generate predictions of stellar occultations by near-Earth asteroids using the **Occult software**

List of stellar occultations by NEAs from August 2021 to the end of December 2021 Some of chosen criteria from Occult Software using Astorb calculation

Star limit magnitude : 14 ; Mag drop equal or more than 0.2 secondes ; Asteroid smaller than 1 km ;

Probability more than 10%

*Liste des occultations NEA 03-2021 au 12-2021.txt - Bloc-notes

Event Summary for Longitude 3.04°, Latitude 30.80° - sorted by Date Astorb

Fichier Edition Format Affichage Aide

Date Durn Star Mag-Drop Elon % Star d Planet Alt Dist Sun Proba-Moon § ۲ R.A. (J2000) Max Proba-U.T. Diameter Dec. mag bility m d h m km sec/m V R o Ill No. No Name km Alt bility Elon ill C h m s 0 У 2021 Aug 22 22 13.7 2 0.006 0.4s 12.2 4.2 4.7 142 UCAC4 559-142228 1943 Anteros 50 627 0% 38 100 23 23 9.183 21 39 24.03 3823 17% 2021 Aug 22 22 18.9 2 0.006 0.4s 12.0 4.5 4.9 142 1943 Anteros 52 355 0% 38 100 23 23 8.840 21 39 23.47 3824 17% UCAC4 559-142227 2021 Aug 23 22 9.9 2 0.004 0.2s 11.0 6.3 6.3 TYC 1174-00344-1 V 32906 1994 RH 38 308 0% 21 97 23 56 57.847 10 48 15.28 3847 01% 146 0.3s 12.4 5.8 5.8 118 27 1% 48 97 01% 2021 Aug 24 2 33.4 2 0.003 UCAC4 620-003412 303174 2004 FH11 84 1 12 44.079 33 50 47.30 3851 2021 Aug 27 4 30.3 3 0.002 0.3s 12.6 8.2 8.2 121 UCAC4 486-002930 416567 2004 EB 63 780 -11 0% 4 78 2 10 34.874 7 2 24.67 3910 00% 2021 Aug 29 23 23.9 0.2s 11.3 5.7 0% 61 23 51 30.913 13 20 57.33 3967 01% 2 0.004 5.9 150 TYC 1177-01499-1 32906 1994 RH 61 252 53 2021 Sep 1 19 25.4 1 0.004 0.5s 12.8 4.1 4.3 124 UCAC4 679-106869 285571 2000 PO9 50 998 0% 97 27 21 34 36.766 45 42 9.80 4026 00% 5 1% 159 11 01% 2021 Sep 3 21 54.4 1 0.001 0.6s 11.3 10.0 10.5 121 UCAC4 318-218029 7088 Ishtar 26 18 54 3.361 -26 30 13.10 4062 2021 Sep 5 1 0.004 0.4s 12.7 4.4 4.9 UCAC4 679-108214 285571 2000 PQ9 37 784 0% 114 5 21 38 33.607 45 39 15.05 4082 00% 2 58.1 125 2021 Sep 6 21 32.6 1 0.001 0.5s 12.4 7.3 7.5 108 UCAC4 616-064608 189011 Ogmios 64 371 0% 105 0 18 47 3.699 33 9 15.21 4130 00% 2021 Sep 10 23 1.7 0.7s 12.7 1.7 1.8 UCAC4 469-132446 68063 2000 YJ66 90 1% 111 19 C 21 56 38.631 3 42 6.04 4224 01% 2 0.011 158 62 2021 Sep 11 1 0.004 0.3s 13.0 4.4 4.5 UCAC4 676-108451 963 0% 111 20 21 45 46.784 6 3.13 4228 00% 3 0.8 126 285571 2000 PQ9 33 45 2021 Sep 16 21 56.1 1 0.003 0.3s 12.0 5.6 5.7 128 TYC 3197-00629-1 285571 2000 PO9 76 334 0% 70 82 21 52 55.146 44 7 21.78 4351 00% 2021 Sep 17 1 7.2 2 0.002 0.3s 12.8 5.6 5.6 143 UCAC4 400-002281 25330 1999 KV4 47 477 0% 78 83 2 2 17.737 -10 8 36.06 4356 01% 2021 Sep 17 1 29.5 1 0.002 0.4s 11.8 7.3 7.3 121 TYC 2839-01688-1 162273 1999 VL12 72 216 0% 104 83 2 29 17.791 42 13 41.81 4357 00% 0% 65 00% 20 4.4 1 0.003 0.2s 12.5 5.1 5.4 128 UCAC4 670-105975 64 870 89 21 54 5.443 43 56 0.11 4378 2021 Sep 17 285571 2000 PQ9 2021 Sep 18 4 4.4 2 0.006 0.5s 12.9 5.2 5.3 121 UCAC4 721-088983 442742 2012 WP3 25 924 0% 74 91 22 11 34.427 54 10 39.63 4383 00% 2021 Sep 19 21 24.7 2 0.006 0.5s 11.4 6.7 7.0 122 UCAC4 720-089720 442742 2012 WP3 65 155 0% 66 98 22 13 54,149 53 48 46.28 4422 03% 2021 Sep 21 19 49.9 0.7s 12.6 1.9 2.2 UCAC4 487-134866 68063 2000 YJ66 54 922 0% 39 99 22 3 55.340 7 17 50.73 4471 01% 2 0.011 151 C 2021 Sep 25 5 0.006 0.3s 12.9 3.8 4.0 UCAC4 633-023594 5143 Heracles 83 566 -10 0% 33 84 5 12 19,669 36 30 37,95 4537 05% 4 56.5 102 C 2021 Sep 26 22 22.4 0.4s 12.2 8.0 8.0 UCAC4 579-120970 52762 1998 MT24 79 557 0% 85 70 22 14 39,497 25 43 51.53 04% 7 0.004 142 4565 2021 Sep 29 20 20.3 1 0.004 0.2s 12.4 4.9 5.1 140 UCAC4 529-144276 283460 2001 PD1 72 216 0% 123 43 21 50 15.376 15 38 12.49 4640 02% 2021 Oct 3 1 25.9 5 0.002 0.3s 10.9 9.5 10.0 TYC 171-04231-1 5587 1990 SB 18 174 0% 43 14 § 7 12 25.568 4 23 2.81 4718 05% 81 0% 32 13 23% 2021 Oct 3 4 54.8 2 0.006 0.3s 12.3 7.2 7.2 73 UCAC4 536-044921 363505 2003 UC20 60 850 -11 7 52 39.099 17 1 8.38 4720 2021 Oct 4 21 33.0 2 0.005 0.4s 11.5 5.4 5.6 UCAC4 504-143318 1943 Anteros 70 171 0% 155 3 22 28 56,734 10 41 28,74 4762 14% 146 2021 Oct 5 20 45.0 2 0.007 0.2s 10.8 6.8 6.8 130 TYC 3625-00083-1 442742 2012 WP3 71 506 0% 126 1 22 43 49,131 47 19 50.16 4781 03% 2021 Oct 8 2 55.3 3 0.004 0.6s 12.5 5.4 5.9 113 UCAC4 629-022125 138205 2000 EZ148 76 316 0% 135 4 5 15 43,498 35 45 30.34 4835 00% 0% 94 27 02% 2021 Oct 11 0 17.4 2 0.006 0.3s 11.0 5.4 5.7 138 TYC 2735-01098-1 32906 1994 RH 48 749 22 33 38,667 30 7 17,72 4898 2021 Oct 16 3 18.9 0.3s 12.5 8.3 UCAC4 549-013470 K 90075 2002 VU94 287 0% 108 5 14 7.736 04% 2 0.001 8.6 123 79 80 19 36 22,54 4984 2021 Oct 21 20 23.2 5 0,009 0.2s 11.6 4.2 4.4 118 UCAC4 577-121533 16960 1998 OS52 74 218 0% 74 99 21 27 11.262 25 18 25.26 5100 02% 2021 Oct 21 22 10.3 UCAC4 577-121510 16960 1998 QS52 51 105 1% 75 98 21 26 56,521 25 15 50,39 5102 02% 5 0,009 0.2s 12.4 3.3 3.6 117 < >

Ln 5, Col 1 100% Windows (CRLF) UTF-8 avec nomencla

– o ×

*Liste des occultations NEA 03-2021 au 12-2021.txt - Bloc-notes

Fichier Edition Format Affichage Aide

Event S	ummary for	Longitude	3.04°, La	atitude	e 30.80°	' - sorte	d by Date Astorb										
Date y m d	U.T. h m	Diameter km "	Durn S sec/m	atar M mag	1ag-Drop V R	o Elon % o Ill	Star No.	d Planet No Name	Alt o	Dist s km /	Sun Proba- Alt bility	Moo Elon	n §⊛ ill ⊄	R.A. (J200 h m s	0) Dec. o ' "		Max Proba bility
1																	
2021 Oct 24	3 10.8	3 0.024	0.2s 1	1.3 4	4.0 4.0	68	TYC 3454-00372-1	159857 2004 LJ1	20	310	0%	85	89	11 52 57.371	50 28 49.43	5129	01%
2021 Oct 24	19 23.5	17 0.013	0.7s 1	0.0 4	4.4 4.8	3 71	TYC 6293-01566-1	433 Eros	23	889	0%	155	85 §	18 53 13.822	-20 58 58.40	5145	31%
2021 Oct 26	0 9.8	5 0.012	0.2s 1	1.2 3	3.7 3.8	3 106	TYC 2952-00145-1	5143 Heracles	34	356	0%	22	76 €	7 18 35.266	43 2 45.27	5169	10%
2021 Oct 26	0 22.9	2 0.001	0.2s 1	0.4 1	3.6 13.8	3 105	TYC 166-00940-1	462041 2007 DL8	25	366	0%	27	76	7 1 31.675	2 56 43.42	5170	00%
2021 Oct 27	20 0.8	5 0.010	0.3s 1	1.0 4	4.7 4.9) 109	UCAC4 559-131346	16960 1998 QS52	68	883	0%	129	60	21 8 50.644	21 40 52.90	5206	02%
2021 Oct 28	18 40.3	0 0.001	0.2s 1	3.0 8	3.5 8.6	5 107	UCAC4 552-127589	363344 2002 QC7	79	75	0%	135	51	21 3 35.285	20 23 14.91	5228	00%
2021 Oct 28	22 59.4	5 0.013	0.2s 1	2.8 2	2.1 2.1	105	UCAC4 668-052917	5143 Heracles	20	643	0%	24	49 C	7 41 33.483	43 24 26.41	5235	11%
2021 Oct 30	2 53.8	3 0.004	0.2s 1	2.8 7	7.0 7.1	169	UCAC4 501-004504	234061 1999 HE1	47	591	0%	97	37	2 58 58.905	10 3 8.02	5256	02%
2021 Oct 30	3 8.2	3 0.027	0.2s 1	2.6 2	2.3 2.3	3 74	UCAC4 651-050599	159857 2004 LJ1	33	456	0%	24	37	10 36 49.262	40 6 57.47	5257	01%
2021 Oct 30	20 20.3	2 0.001	0.4s 1	2.5 11	1.9 11.9) 110	UCAC4 428-122435	445025 2008 NS1	50	56	0%	166	30	21 46 27.470	- 4 29 26.86	5275	00%
2021 Nov 3	5 4.6	2 0.002	0.2s 1	2.3 8	3.9 8.8	3 128	UCAC4 617-032648	144901 2004 WG1	65	374	0%	105	4	6 10 16.437	33 19 13.51	5349	01%
2021 Nov 5	1 31.0	3 0.027	0.2s 1	1.8 2	2.7 2.9	84	UCAC4 579-043938	159857 2004 LJ1	25	334	0%	87	0	9 38 19.539	25 39 53.06	5387	01%
2021 Nov 5	21 35.9	1 0.002	0.3s 1	2.1 6	5.3 6.3	3 137	UCAC4 610-022644	162149 1998 YQ11	29	679	0%	151	2	5 40 35.756	31 59 29.38	5411	00%
2021 Nov 8	20 39.5	1 0.005	0.2s 1	2.7	5.2 5.5	5 73	UCAC4 633-061604	518678 2008 UZ94	22	544	0%	63	21	18 26 15.514	36 30 44.09	5493	00%
2021 Nov 10	1 56.5	3 0.001	0.25	9.4 12	2.0 12.0) 125	UCAC4 558-035586	242216 2003 RN10	68	957	0%	162	34	6 52 21.311	21 29 35.30	5518	00%
2021 Nov 11	3 23.7	3 0.025	0.2s 1	1.6 2	2.8 2.9	96	UCAC4 503-050857	159857 2004 LJ1	56	451	0%	168	46	8 54 25.304	10 34 45.67	5551	01%
2021 Nov 12	23 32.8	2 0.001	0.3s 1	2.9 9	9.4 9.6	5 113	UCAC4 581-041040	3671 Dionysus	27	417	0%	139	65 C	8 2 54.067	26 1 17.39	5605	01%
2021 Nov 13	5 13.2	3 0.024	0.25	9.8 4	4.4 4.7	99	TYC 223-01542-1	159857 2004 LJ1	65	575	0%	145	68	8 42 10.322	5 59 22.81	5612	01%
2021 Nov 14	1 25.5	1 0.003	0.3s 1	2.6 5	5.4 5.4	144	UCAC4 603-025407	162149 1998 YQ11	82	192	0%	95	75	5 46 14.529	30 32 19.97	5637	00%
2021 Nov 14	18 10.9	2 0.001	0.2s 1	2.6 9	9.2 9.2	2 111	UCAC4 523-148916	138846 2000 VJ61	72	938	0%	31	81	22 31 20.189	14 26 44.17	5664	00%
2021 Nov 14	22 47.7	1 0.002	0.2s 1	0.9 8	3.0 7.8	3 124	TYC 5373-00732-1	68031 2000 YK29	19	239	0%	92	83	6 32 47.515	-11 46 59.70	5671	01%
2021 Nov 14	23 42.9	1 0.007	0.3s 1	2.8 1	1.9 2.2	2 166	UCAC4 613-009552	4660 Nereus	85	893	0%	53	83	3 11 41.386	32 31 27.02	5673	03%
2021 Nov 16	23 53.8	3 0.022	0.2s 1	1.4	3.0 3.3	3 105	UCAC4 444-046016	159857 2004 LJ1	18	294	1%	98	95	8 22 34.414	- 1 19 39.47	5725	01%
2021 Nov 19	2 0.9	3 0.004	0.3s 1	2.2 5	5.5 5.6	5 158	UCAC4 647-018547	138205 2000 EZ148	67	49	0%	24	100	4 20 43.089	39 13 17.49	5784	00%
2021 Nov 20	1 5.8	1 0.009	0.3s 1	3.0 1	1.4 1.7	/ 163	UCAC4 629-010978	4660 Nereus	65	272	0%	19	100	3 16 51,702	35 47 27,97	5821	03%
2021 Nov 22	4 16.3	1 0.012	0.3s 1	0.1 3	3.8 4.4	161	TYC 2861-01082-1	s 4660 Nereus	27	881	0%	36	93	3 20 11.823	37 33 37,91	5899	04%
2021 Nov 22	22 49.2	1 0.011	0.2s 1	2.1 1	1.9 2.6) 161	UCAC4 642-013556	4660 Nereus	81	717	0%	43	89	3 21 47.196	38 18 5.81	5933	04%
2021 Nov 22	23 16.0	1 0.011	0.2s 1	2.7 1	1.5 1.6	5 161	UCAC4 642-013557	4660 Nereus	81	154	0%	44	89	3 21 49.276	38 19 7.15	5934	04%
2021 Nov 23	17 43.5	1 0.013	0.3s 1	1.3 4	1.0 3.8	3 97	TYC 4408-00589-1	163899 2003 SD220	20	100	0%	66	84	13 38 17.117	73 49 34.95	5976	54%
2021 Nov 24	0 45.6	1 0.011	0.25 1	0.6	3.2 3.5	5 160	TYC 2865-00108-1	4660 Nereus	67	22	0%	54	82	3 24 5.935	39 23 52.25	6000	04%
<	0.510	1 0.011	5.25 1			200					570	21		5 2. 5.555		0000	
-																	

Ln 6, Col 1 100% Windows (CRLF) UTF-8 avec nomencla

26

- 0 ×

 \land

*Liste des occultations NEA 03-2021 au 12-2021.txt - Bloc-notes

Fichier Edition Format Affichage Aide

	Ever	nt Si	ummary f	or Lon	gitude	3.04°,	Latitu	de 30	0.80°	- so	rted by Date Astor)												
	Date	e	U.T.	Di	ameter	Durn	Star	Mag-	Drop	Elon	% Star	d	Planet	Alt	Dist Sun	Proba-	Моо	n §	R.	A. (J200)0) D	⊇c.		Max Proba
у	m	d	h m	k	m "	sec/m	mag	v	R	0	Ill No.	1	No Name	0	km Alt	bility	Elon	ill 🤇	h r	n s	0			bility
2021	Nov	24	3 30	7	3 0 019	030	10 5	10	3 0	114	TVC 5/10-01737.	1 1508	57 2004 1 11	18	158	1%	37	Q1	7 5	1 55 366	_11 3	27 2 75	5 6008	01%
2021	Nov	24	1 22	, 6	1 0 011	0.55	12.1	1.8	1.9	160		6 46	50 Nereus	26	173	0%	56	81	3 2	1 22 907	39 3	2.71	6010 S	01%
2021	Nov	24	17 31.	9	1 0.012	0.25	12.2	1.7	1.7	159	TYC 2865-01443-	1 460	50 Nereus	25	669 -10	0%	62	76	3 2	5 4 . 158	40	9 6.64	4 6040	04%
2024	Neur	24	17 25	0	2 0 000	0.20	0.5	C 0	C 0	100		1 600		53	547 44	0%	100	70 0	0.1	1 601	47	0 40 00	6041	01%
2021	Nov	24	1/ 55.	o ว	1 0 010	0.25	11 0	1.0	2.9	120	UCAC4 556-00044	5 460	53 2000 FJ00	27	217 -11	0%	109	70 🤇	2 2	F 1.001	10	9 49.95	6062	01%
2021	Nov	25	4 43. 22 20	Z 1	2 0 006	0.25	12.5	2.0	2.0	126	UCAC4 034-01312	0 690		22	09	0%	122	65 (0 1 ⁻	1.229	17 1	5 34 96	6111	04%
2021	Nov	25	25 20.	0	1 0 010	0.25	11 2	2.2	4.2	150	TVC 2860 00221	1 460	53 2000 1300	40	025	0%	75	65	2 2	20.034	11 1	0 17 10) 6112	01%
2021	Nov	26	23 27.	6	3 0.017	0.2s	12.6	2.5	2.3	116	UCAC4 382-03872	4 1598	57 2004 LJ1	43	305	0%	42	64	7 4	38.898	-13 4	13 6.62	6122	01%
2021	Nov	26	1 0	1	1 0 013	0.25	10 7	2 9	2 9	158	TVC 2869-01881.	1 46	50 Nereus	30	637	0%	76	64	3.0	9 59 151	/11	3 53 53	6125	05%
2021	Nov	26	20 52.	4	1 0.013	0.25	12.6	1.3	1.2	157	UCAC4 665-01830	1 46	50 Nereus	62	936	0%	84	57	3 3	39.649	42 9	51 43.6 [°]	5 6170	05%
2021	Nov	26	23 54.	3	1 0.013	0.25	11.2	2.3	2.9	157	UCAC4 666-01814	2 46	50 Nereus	73	721	0%	85	55	3 3	2,581	43	2 15.88	6174	05%
2021	Nov	27	2 14.	3	1 0.004	0.35	9.4	8.2	8.9	103	TYC 7638-01516-	1 v 74	R2 1994 PC1	16	778	0%	72	54	7 1	a 4.963	-42 "	8 1.3	6181	00%
2021	Nov	27	4 50.	8	2 0.003	0.2s	8.8	9.6	9.8	105	UCAC4 573-04677	2 863	24 1999 WA2	82	749	0%	12	53	9 4	3 24.347	24	35 12.80	6192	06%
2021	Nov	28	1 49.	2	3 0.016	0.3s	9.9	4.8	4.4	118	TYC 5980-00171-	1 1598	57 2004 LJ1	41	644	0%	58	44	7 3	7 34.990	-15 3	35 47.95	6234	01%
2021	Nov	29	4 0.	9	1 0.003	0.25	12.3	6.1	6.6	82	UCAC4 241-03962	0 5064	59 2002 AL14	16	335	0%	56	33	94	5 13.974	-41 5	40.37	6274	02%
2021	Nov	29	18 9.	2	2 0.005	0.25	12.2	4.4	4.4	125	UCAC4 538-0008	2 680	53 2000 YJ66	66	212	0%	160	27 C	0 20	35,335	17 3	2 57.85	6295	01%
2021	Nov	30	4 32.	1	3 0.016	0.3s	12.0	2.8	2.8	120	TYC 5983-00502-	1 1598	57 2004 LJ1	35	747	0%	80	23	73	22.670	-17 2	0 13.83	6310	01%
2021	Dec	1	19 44.	6	2 0.005	0.2s	11.8	4.9	5.0	124	UCAC4 539-00095	5 680	53 2000 YJ66	77	420	0%	155	9 🕻	0 33	44.062	17 4	2 22.39	6374	01%
2021	Dec	2	1 41.	7	3 0.015	0.4s	12.2	2.7	2.8	122	UCAC4 357-02837	2 1598	57 2004 LJ1	39	242	0%	100	7	7 2	4 16.996	-18 4	10 53.71	L 6386	01%
2021	Dec	2	2 24.	2	1 0.018	0.2s	12.5	2.2	2.2	99	UCAC4 836-01426	3 16389	99 2003 SD220	21	395	0%	92	7	16 3	5 25.846	77	6 35.18	6388	68%
2021	Dec	2	17 38.	7	1 0.019	0.2s	12.9	1.8	1.9	99	UCAC4 835-01439	7 16389	99 2003 SD220	31	519 -11	0%	94	4	16 5	5 31.956	76 5	59 51.20	6415	70%
2021	Dec	2	23 18.	3	1 0.005	0.3s	12.1	4.2	4.0	154	TYC 2874-00447-	2 15359	91 2001 SN263	73	371	0%	152	З 🕻	3 33	3 23.642	44 4	4 25.65	6430	00%
2021	Dec	3	øз.	5	3 0.015	0.4s	10.4	4.5	4.5	122	TYC 5974-01191-	2 D1598	57 2004 LJ1	30	498	0%	110	3	7 2	1 21.386	-19 1	49.61	L 6432	01%
2021	Dec	3	1 40.	6	3 0.004	0.3s	12.2	5.4	5.4	127	UCAC4 561-04685	9 K 204	50 Robwhiteley	64	527	0%	109	2	8 2	3 54.224	22 1	1 19.91	L 6439	03%
2021	Dec	3	35.	5	1 0.019	0.2s	11.9	2.7	2.6	99	TYC 4568-00097-	1 16389	99 2003 SD220	21	62	0%	96	2	17 1	9 56.561	76 4	9 13.33	6445	71%
2021	Dec	3	5 21.	5	2 0.011	0.2s	12.0	5.9	6.0	93	UCAC4 418-05227	'5 W36350	05 2003 UC20	53	804	0%	78	2	10 1	5 55.197	- 6 2	4 33.24	6447	42%
2021	Dec	3	17 44.	1	1 0.019	0.2s	11.8	2.7	3.0	99	UCAC4 833-01560	0 16389	99 2003 SD220	32	818	0%	98	1	17 3	9 48.182	76 3	32 18.94	4 6481	72%
2021	Dec	3	17 39.	8	5 0.012	0.2s	10.9	5.1	5.6	46	UCAC4 421-12434	9 169	50 1998 QS52	33	253 -11	0%	54	1	19 3	9 22.835	- 5 5	5 41.36	5 64 83	02%
2021	Dec	3	19 12.	3	1 0.019	0.2s	12.2	2.3	2.6	99	UCAC4 833-01563	2 1638	99 2003 SD220	27	1	37%	99	0	17 3	2 52.300	76 2	28 52.28	6486	72%
2021	Dec	3	21 13.	8	3 0.004	0.3s	11.9	5.9	6.5	161	UCAC4 642-01644	5 1382	05 2000 EZ148	68	44	0%	163	0	3 5	4 35.733	38 1	4 45.68	6491	00%
2021	Dec	4	0 13.	6	1 0.020	0.2s	12.9	1.7	1.9	99	UCAC4 832-01566	3 16389	99 2003 SD220	17	888	0%	99	0	17 4	0 36 .2 39	76 1	8 45.75	6496	72%
1																								

Ln 6, Col 1 100% Windows (CRLF) UTF-8 av

27

- 0 ×

 \land

We have selected 3 NEAs candidates as **1943 Anteros** ; **5143 Heracles** and **2003 SD220** because the occultations that can produce have a probability of more than 30% We used JPL and AstOrb calculation

*Liste des occultations NEA 03-2021 au 12-2021.txt - Bloc-notes

Event Summary for Longitude 3.04°, Latitude 30.80° - sorted by Date Astorb

Fichier Edition Format Affichage Aide

– 0 ×

Date	U.T.	Diameter	Durn	Star	Mag-	Drop	Elon	% Star	d Planet	Alt	Dist	Sun F	Proba-	Moo	n §●	R.A	. (J2000) Dec			Max Proba-
y iii u		KIII	Sec/m	mag	v	n	01	II NO.	NO Name	0	KIII	AIU	JIIICy	EION	«		5	0			DIIIty
2021 Dec 4	22 9.3	4 0.007	0.5s	12.5	3.7	3.9	144	UCAC4 559-040215	7358 Oze	35	106		0%	152	1	7 21	35.320	21 36	48.48	6542	04%
2021 Dec 4	22 9.2	1 0.020	0.2s	12.1	2.3	2.3	99	UCAC4 828-018045	163899 2003 SD220	20	589		0%	101	1	18 11	0.311	75 31	8.35	6544	74%
2021 Dec 5	0 15.0	3 0.014	0.4s	12.1	2.9	2.9	124	UCAC4 348-025191	159857 2004 LJ1	32	625		0%	128	1	7 15	12.746	-20 25	53.84	6549	01%
2021 Dec 5	0 32.7	1 0.020	0.2s	9.9	4.4	4.3	99	TYC 4570-02206-1	163899 2003 SD220	16	470		Ø%	101	1	18 14	39.226	75 24	24.09	6550	74%
2021 Dec 5	0 33.0	1 0.020	0.2s	12.7	1.8	2.0	99	UCAC4 828-018120	163899 2003 SD220	16	939		0%	101	1	18 14	37.620	75 24	8.77	6551	74%
2021 Dec 5	21 56.6	1 0.021	0.2s	12.1	2.2	2.3	98	TYC 4442-00338-1	163899 2003 SD220	21	587		Ø%	101	4	18 42	43.521	74 18	55.59	6596	76%
2021 Dec 6	17 27.6	1 0.005	0.4s	12.2	4.0	4.1	151	TYC 3312-00970-1	153591 2001 SN263	34	744	-9	0%	130	8 🤇	3 26	8.729	45 3	1.50	6629	00%
2021 Dec 7	22 11.4	3 0.013	0.4s	11.8	3.3	3.4	126	TYC 5976-02756-1	159857 2004 LJ1	16	223		1%	130	18	76	46.512	-21 47	41.36	6665	01%
2021 Dec 8	22 6.5	6 0.017	0.3s	12.0	4.1	4.2	129	UCAC4 399-002629	88263 2001 KQ1	46	111		Ø%	69	28	2 20	58.295	-10 15	10.81	6690	14%
2021 Dec 8	22 32.2	1 0.005	0.4s	12.6	3.6	3.5	150	TYC 3311-00023-1	153591 2001 SN263	74	96		Ø%	101	28 C	3 21	46.788	45 10	15.94	6692	00%
2021 Dec 10	20 25.5	1 0.006	0.4s	11.1	5.0	5.3	148	UCAC4 677-018311	153591 2001 SN263	68	720		Ø%	77	48 C	3 18	5.610	45 14	5.39	6740	00%
2021 Dec 11	19 40.1	1 0.006	0.4s	12.1	4.0	4.0	147	UCAC4 677-018030	153591 2001 SN263	62	733		0%	66	58 C	3 16	14.857	45 15	2.74	6763	00%
2021 Dec 14	3 45.2	4 0.003	0.3s	10.0	9.1	9.2	124	TYC 4868-00324-1	W138013 2000 CN101	55	155		0%	105	79	8 47	24.444	- 3 5	23.15	6810	03%
2021 Dec 15	1 22.8	4 0.007	0.4s	12.2	3.8	3.8	158	UCAC4 557-037289	7358 Oze	80	73		1%	67	86	75	48.651	21 14	51.40	6824	04%
2021 Dec 16	3 39.4	8 0.008	0.6s	12.9	2.9	3.0	167	UCAC4 517-020685	1627 Ivar	40	520		Ø%	41	92 §	67	41.349	13 17	44.13	6839	68%
2021 Dec 16	20 2.4	3 0.001	0.4s	12.7	9.7	9.8	107	UCAC4 492-000976	K416567 2004 EB	61	990		Ø%	48	95	0 37	51.910	8 13	24.02	6846	00%
2021 Dec 16	20 53.9	1 0.001	0.3s	12.7	7.0	7.0	99	UCAC4 700-114976	307161 2002 DY3	40	365		0%	67	95	22 39	36.355	49 50	9.05	6847	00%
2021 Dec 20	2 0.8	3 0.010	0.5s	12.3	3.3	3.4	131	UCAC4 328-014336	159857 2004 LJ1	31	672		0%	51	99	6 37	15.380	-24 27	28.47	6897	00%
2021 Dec 20	23 48.5	1 0.002	0.2s	12.9	5.9	6.0	129	UCAC4 430-003712	87024 2000 JS66	35	856		Ø%	71	97	2 58	18.547	- 4 9	8.38	6904	00%
2021 Dec 21	19 14.5	1 0.001	0.3s	12.0	8.8	9.2	135	UCAC4 569-005793	155334 2006 DZ169	72	116		Ø%	72	94	2 43	39.301	23 45	8.90	6910	01%
2021 Dec 25	19 3.7	1 0.007	0.7s	12.0	3.9	4.1	134	UCAC4 673-015537	153591 2001 SN263	69	742		Ø%	108	64 C	2 54	22.779	44 32	41.27	6943	00%
2021 Dec 26	17 31.6	1 0.007	0.8s	12.7	3.3	3.7	133	UCAC4 673-015446	153591 2001 SN263	54	790	-8	0%	119	54 🤇	2 53	25.300	44 26	22.77	6955	00%
2021 Dec 30	0 19.6	4 0.006	0.4s	12.8	3.0	3.1	177	UCAC4 554-029926	7358 Oze	78	402		0%	127	20	6 40	20.367	20 46	35.74	7018	04%
2021 Dec 30	17 53.2	1 0.010	0.4s	10.5	6.0	6.2	63	TYC 573-00377-1	7341 1991 VK	50	565		Ø%	104	13	22 30	31.256	5 10	41.74	7046	16%
2021 Dec 30	19 29.1	1 0.020	0.2s	12.8	3.7	3.9	56	UCAC4 372-180089	K163899 2003 SD220	19	231		Ø%	97	13	22 36	23.713	-15 43	33.38	7048	73%

100% Windows (CRLF) U

Ln 6, Col 1

UTF-8 avec nomencla

Observed Results of some stellar occultations produced by Near-Earth asteroids

- 15-10-2019 a stellar occultation by NEA PHA Apollo 3200 Phaethon at Ain Defla (160 kms West of Algiers) First positive observation with C8 Telescope.
- 25-10-2019 a stellar occultation by NEA PHA Apollo 3200 Phaethon at Nedroma (570 kms West of Algiers) Positive observation with C8 Telescope.
- 17-11-2020 a stellar occultation by NEA Amor 1036 Ganymed at Laghouat (500 kms South of Algiers) Technical problems.
- 20-01-2021 a stellar occultation by NEA PHA Amor 3122 Florence at Bechar (1000 kms South West of Algiers) One negative observation with C8 Telescope.
- 28-01-2021 a stellar occultation by NEA Amor 1999 AP10 at Ain Temouchent (500 kms West of Algiers) Mists and Full moon near the star.
- 16-03-2021 a stellar occultation by NEA Amor 2009 WF104 at Tebessa (600 kms East of Algiers) One Negative observation and acuisition problems.
- 22-08-2021 a stellar occultation by NEA Amor 1943 Anteros at El-Affroun (Blida) (60 kms West of Algiers) One Negative Observation with C11 Telescope.

The stellar occultation by the NEA Amor 1036 Ganymed near Laghouat (450 km South of Algiers) We had technical problems

ESOP XL, Bialystok (Poland), August 2021

The stellar occultation by the NEA PHA Amor 3122 Florence near Bechar (970 km South West of Algiers) and we had one negative observation Probability : 10%

ESOP XL, Bialystok (Poland), August 2021

01

EA7
The stellar occultation by NEA Amor 1999 AP10 near Ain Temouchent (490 km East of Algiers) We had mists and full moon near the star Probability : 35%

ESOP XL, Bialystok (Poland), August 2021

The stellar occultation by NEA Amor 2009 WF104 near Tebessa (630 km East of Algiers) One Negative observation and acuisition problems Probability : 19%

The stellar occultation by NEA Amor 1943 Anteros near El-Affroun (Blida) (70 km East of Algiers) One Negative observation Probability : 62%

Satellites: 9 HDOP: 0.90 UTC: 22:15:29 2021-08-22 Latitude: 3627.0423 N Longitude: 00236.3381 E Altitude: 126.0 M MSL WGS84 separation: 46.5 M

CPU clock 1000008 Hz Err Transient vSync 20000 CPU us External PAL TVsafe Last used 22h 2021-08-22

Signal-minus-Background - No Normalisation - No Binning - 🚺 Include Objects -

Tangra v3.7 - uvs210822-002.lc. Video (AVI.2YUY)

ESOP XL, Bialystok (Poland), August 2021

Publication of the scientific article about the discovery of a double star In Journal of Double star Observations, 2021

TYC 2392-01288-1, Discovery of Stellar Duplicity During Asteroidal Occultation by (283) Emma

Abstract: An occultation of TYC 2392-01288-1 by the minor planet (283) Emma on November 24, 2020 showed this star to be a previously unknown double star. The occultation of the main component alone was observed by one visual double station in Algeria. The occultation of the secondary component alone was observed by three stations in Czechia and Italy. Two negative observations were also reported from Slovakia and Switzerland. From a Gaia G magnitude of 8.73 for the target star, an estimated V magnitude of 12.8 for the asteroid, and a 0.18 mag drop measured for the occultation of the secondary component, we conclude that the approximate G (or V) magnitudes of the two components are 8.9 and 10.7. Two solutions for the separation and position angle of the components are derived from a fit of the chords on the 3D model DAMIT #1859 of the asteroid. The separation of the two components in solution 1 is found to be 0.7000 \pm 0.0038 arcseconds at a position angle of 105.0 \pm 0.2 degrees. The separation of the two components in solution 2 is found to be 0.7530 \pm 0.0026 arcseconds at a position angle of 109.6 \pm 0.2 degrees.

Circumstances

On November 24, 2020 an occultation of TYC 2392-01288-1 by (283) Emma and its moon S2003-283-1 was first predicted by Steve Preston (using Occult software) to pass across Russia, Europe and North Africa. Figure 1 shows the predicted path of the main body's shadow, and Figure 2 shows the predicted path of its moon's shadow, about 450 km to the northwest.

The predicted magnitude drop was 4.1 (V) with a predicted max duration of 11.5 s for Emma and 0.9 s for its moon.

Observations

Seven reports from six different stations were received for this event (summarized in Table Three stations in Europe, one in Czechia and two in Italy, originally waiting for a possible short occultation by the asteroid's moon, recorded actually a ~10 s event with a very low 0.1-0.2 magnitude drop, suggesting that the target star is double and that the asteroid has occulted a faint companion from these locations (Figures 3, 4 and 5). Fortunately, the occultation of the main star was also observed by a team of observers in Algeria, divided in two groups to make a visual double station, who reported a 7 s occultation allowing the measurement of the double star. Two additional stations from

283 Emma #1 occults TYC 2392-01288-1 on 2020 Nov 24 from 19h 21m to 19h 38m UT Star: Max Duration = 11.5 secs Asteroid: (in DAMIT, ISAM) Mag V = 8.6 Mag Drop = 4.2 (0.0r) Sun : Dist = 163° Mag = 12.8 RA = 5 1 52.3239 (astrometric) Dia = 134 ±4km, 0.097" Parallax = 4.609" Dist = 77° Dec = 32 14 29.404 ... [of Date: 5 3 14, 32 16 14] Moon: : illum = 74 % E 0.027"x 0.015" in PA 90 Hourly dRA =-2.360s Prediction of 2020 Oct 28.0 dDec = -4.88"

1 moon. {S/2003(283)1} 9km at 581km, Period 3.353days Orbit@Miriade

Sites favoris | Print

2020/11/24 | 283 | Emma | TYC 2392-01288-1

chords

chords + DAMIT model solution 1 (primary and secondary star events aligned) chords + DAMIT model solution 2 (primary and secondary star events aligned) asteroid measurement: at least 122 km double star solution 1: Sep 0.700", PA 105.0° double star solution 2: Sep 0.753", PA 109.6°

P+ prediction	19:35:32 19:35:32		E	10 00 00	N 38 29 36	0 WS ;		
O+ G. Abderhman et al	19:28:08 19:38:04	L120 VI	IS DZ E	02 37 05.5	N 33 57 29.2	750 WS		
7.0 19:37:05.2 1.0	19:37:12.2 1.0	NTP 0.	.4 0.4	A				
Standard PE applied. Observation with K. Mahmoud/T. Selimi. ;								
0+ O. Bouazara et al 🛛	19:33:18 19:38:03	L120 VI	IS DZ E	02 37 05.8	N 33 57 29.7	750 WS		
7.0 19:37:05.0 1.0	19:37:12.0 1.0	NTP 0.	.4 0.4	A				
Standard PE applied. Observation with R. Hicham/B. Abdelhak. ;								
0- Stefano Sposetti	19:34:32 19:40:40	M280 VI	[D CH E	09 01 26.5	N 46 13 53.2	260 WS ;		
0?2 Pietro Baruffetti	19:33:28 19:36:29	M300 VI	[D IT E	10 07 56.7	N 44 01 17.0	30 WS		
9.73 19:34:28.02 0.22	19:34:37.75 0.18	GPS++						
0.1 observed mag drop instead of 4.2 predicted. ;								
0+2 Michele Bigi	19:32:00 19:36:00	M200 VI	[D IT E	10 08 19.0	N 44 01 33.9	41 WS		
10.41 19:34:27.76 0.16	19:34:38.17 0.41	GPS++						
0.1 observed mag drop instead of 4.2 predicted. ;								
0+2 Petr Zeleny	19:31:16 19:37:07	M254 CC	CD CZ E	17 58 24.5	N 49 27 47.9	338 WS		
10.36 19:33:27.96 0.11	19:33:38.32 0.11	GPS++						
0.2 observed mag drop instead of 4.2 predicted. ;								
0- Peter Nosal	19:33:23 19:36:37	M250 CC	CD SK E	19 17 49.3	N 48 33 24.8	343 WS ;		

ESOP XL, Bialystok (Poland), August 2021

Participative astronomy in Algeria according to observe stellar occutation by asteroids since 2019

مركز الصف في علم الفلك والفيزياء الفلكية والجوفيزياء Centre de recherche en Astronomie, Astrop<mark>hysique</mark> et Géophysique

Avec la collaboration de :

Office Des Etablissements de Jeunes de la Wilaya de Laghouat Ligue des activités scientifiques et culturelles de la wilaya de Laghouat Association Souhail d'Astronomie de Laghouat

الملتقى الوطني الثامن لرصد الإحتجابات الكويكبية

من 26 إلى 27 أكتوبر 2019 رصد احتجاب النجم TYC 1816-01657-1 من طرف الكويكب 332 سيري بولاية الأغواط ليلة السبت 26 إلى الأحد 27 أكتوبر 2019 على الساعة 23:25 بالتوقيت المحتى

Huitieme rencontre nationale sur les occultations astéroïdales du 26 au 27 Octobre 2019

Observation de l'occultation de l'étoile TYC 1816-01657-1 par l'astéroïde 332 Siri à la wilaya de Laghouat la nuit du Samedi 26 au Dimanche 27 Octobre 2019 à 03h25mn heure locale

Avec la participation de : مساهمة

ESOP XL, Bialystok (Poland), August 2021

332 Siri occults TYC 1816-01657-1 on	2019 Oct 27 from 2h 13m to 2h 41m UT	
Star:	Max Duration = 5.5 secs	Asteroid:
Mag V = 8.8	Mag Drop = 5.2 (0.0r)	Mag = 14.0
$R\bar{A} = 4 27 11.8720 (BCRS)$	Sun : Dist = 145°	Dia = 41km, 0.030"
Dec = 23 30 46.699	Moon: Dist = 129°	Parallax = 4.695"
[of Date: 4 28 23, 23 33 20]	: illum = 2 %	Hourly dRA =-1.435s
Prediction of 2019 Jul 21.0	E 0.026"x 0.013" in PA 79	dDec = 0.14"

2019/10/27 | 332 | Siri | TYC 1816-01657-1 asteroid measurement: at least 41 km

P+ prediction	02:25:15 02:25:15			E 03 00	00 N	33 15 41	0 WS ;
0+ K. Maamri et al		M150	VIS DZ	E 03 00	10.8 N	33 29 38.0	875 WS
5.57 02:25:20.12 1	02:25:25.69 1	NTP	0.40 0.4	10 A			
Observation with H. Benmahiedine. ;							
0+ A. Ghadi et al		M130	VIS DZ	E 03 00	18.0 N	33 29 37.0	897 WS
5.61 02:25:19.77 1	02:25:25.38 1	NTP	0.40 0.4	10 A			
Observation A. Bouchareb.	;						
0+ O. Bouazara et al		M130	VIS DZ	E 03 02	36.0 N	33 26 46.7	848 WS
4.58 02:25:20.95 1	02:25:25.53 1	NTP	0.40 0.4	10 A			
Observation with H. Rayane	. [;						
O+ Djounai Baba Aissa	02:22:06 02:27:16	M203	VID DZ	E 03 08	33.8 N	33 18 54.1	795 WS
5.28 02:25:17.42 0.04	02:25:22.70 0.04	GPS++		;			
0+ R. Aider et al	l l	M114	VIS DZ	E 03 08	35.4 N	33 18 55.3	795 WS
5.09 02:25:17.47 1	02:25:22.56 1	NTP	0.40 0.4	10 A			
Observation with S. Belhanachi/Y. Hocine. ;							
0- N Bouhoume Ali et al	02:24:01 02:26:03	M114	VIS DZ	E 03 20	28.0 N	33 09 27.0	743 WS
Observation with B. Benaoumeur. ;							

Antenna Place : 3 teams - 3 telescopes - 6 persons Souhail Association of Astronomy (Laghouat) One positive Observation

Hassi Dellaa

Nili Place : 4 teams - 4 telescopes - 8 persons Horizon Djurdjura Association (Tizi Ouzou) and Sirius Association of Amateur Astronomers (Bejaia) Two positive Observations

North road connection of Hassi Delaâ 7 kilometers north of Bellil :

NI

3 teams - 3 telescopes - 3 persons Algiers Observatory (CRAAG) and El-Idrissi Association of Astronomy from Bousmail (Tipaza)

Two positive Observations

Youth Hostel of Bellil : 1 team - 1 telescope - 1 personne Algiers Observatory (CRAAG) Technical problems

First road connection 6 kilometers south of Bellil : 2 teams - 2 telescopes - 3 persons Callisto Astronomy Club of Algiers and Al-birûni Astronomy Club of Algiers One positive observation without measure

South road connection of Hassi Delaâ 13 kilometers south of Bellil : 4 teams - 4 telescopes - 8 persons Blida Scientific Association of Astronomy and Al-Asturlabi Association of Astronomy of Bou Saada (Msila) One positive observation without measure

> © 2013-Google Image © 2019 Maxar Technologies Image © 2019 Maxar Technologies Image © 2019 CNES / Airbus

> > Date des images satellite : 30/7/2019

Tilrhemt: telescopes - (

4 teams - 4 telescopes - 6 persons El-Rassed (Aami Essaid) Association of Astronomy (Ghardaia) and ISSERGHI Astronomy Club of El-Atteuf (Ghardaia) League of Scientific Activities of Bordj Bou Arreridj Negative Observation

33°15'39.92"N 3°14'08.79"E élév. 770 m altitude 56.73 km

ESOP XL, Bialystok (Poland), August 2021

Centre de Recherche en Astronomie, Astrophysique et Géophysique Direction de la jeunesse et des sports de la wilaya de Laghouat Association Souhail d'Astronomie de la wilaya de Laghouat

CRAAG

9^{ème} Rencontre Nationale

sur les occultations astéroïdales

O D E J

Office des Etablissements des Jeunes de la Wilaya de Laghouat Institut National pour la Formation des Fonctionnaires du Secteur de l'Education de la wilaya de Laghouat Ligue scientifique et technique des jeunes de la wilaya de Laghouat Centre d'Excellence Tamilz pour la Formation, les langues et les services de consultation de la wilaya de Laghouat

en collaboration avec

Avec la participation de

Office des Etablissements des Jeunes de la wilaya de Borj Bou Arreridj / Office des Etablissements des Jeunes de la wilaya de Mila Ligue des activités scientifiques et techniques des jeunes de la Wilaya de Tizi Ouzou / Ligue des jeunes scientifiques amateurs d'Alger Ligue des activités scientifiques et techniques des jeunes de la Wilaya de Sétif / Ligue des activités scientifiques et techniques des lauras de Médéa Ligue des activités scientifiques et techniques des jeunes de la Wilaya de Ghardaïa / Ligue des activités scientifiques et techniques des jeunes de la Wilaya de Tindouf

Association Siruis des astronomes amateurs de Bejaïa / Association Scientifique et Astronomique de Bilda Association scientifique et duriurelle Imssi Nikitane de Tananaset / Association Scientifique Horizon Djurdjura de Tiz Ouzou Association Scientifique et Astronomique El-Bouzdjani de Médéa / Association d'Astronomie Ei-Batani de Mostaganem Association Astronomise El-Bouzdjani de Médéa / Association Scientifique et Astronomique Enadim Association Astronomise El-Bouzdjani de Médéa / Association Scientifique et Astronomise El-Batani d'Oran Association duttrelle et scientifique El-Marar - Méliana - Ain Defa / Association d'Astronomie El-Batani d'Oran Association culturelle et scientifique El-Marar - Méliana - Ain Defa / Association d'Astronomie et Astronomie El-Batani d'Oran Association culturelle ESSALAM - Bounourà - Chardaïa / Association d'astronomie et des techniques spatiales El-Ootb - Berriane - Ghardaïa Association Culturelle ED El Haitlem avec le parc culturel Anggar del suivaga déléguée de la Stala

Club d'Astronomie et les sciences anusantes NASSA HAGGAR - Tamanrasset / Club d'Astronomie Al-Birotini de la maison des Jeunes d'El-Mouradia - Alger Club d'Astronomie Callisto du centre culturel El-Marsa - Alger / Club d'Astronomie Al-Shirazi du Centre des Losins Scientifiques de la wilaya de Mila Club d'Astronomie Isserghi du centre culturel El-Attef - Ghardaïa / Club d'Astronomie Armir - Béni Isguen - Ghardaïa Club d'Astronomie Armir - Béni Isguen - Ghardaïa

ESOP XL, Bialystok (Poland), August 2021

 1171 Rusthawelia occults HIP 5315 on 2020 Oct 24 from 20h 20m to 20h 37m UT

 Star:
 Dia = 1mas

 Mag V = 6.2
 Max Duration = 8.1 secs

 RA = 1 7 59.8627 (astrometric)
 Sun : Dist = 164°

 Dec = 1 59 25.944
 Sun : Dist = 59°

 Iof Date: 1 9 4, 2 6 5]
 : illum = 63 %

 Prediction of 2020 Aug 29.0
 E 0.042"x 0.018" in PA 69

Expect fades - star dia.

Summary

We are interesting to study more stellar occultation by asteroids and specially NEA (Near-Earth Asteroids) and TNO (TransNeptunian Objets).

Now, at Algiers Observatory, there are two of us each preparing a PhD thesis on occultations. I am more interested by NEOs, while my colleague is more interested by Trojans.

We intend in the near future to expand the team by recruiting a third one to develop this discipline in Algeria.

In parallel, we develop the Algerian Occultation Amateurs Astronomers Network to observe firstly more easy stellar occultations by asteroids visually which follows the works of Participative Astronomy in Algeria.

Finally, we wish to create a relationship with other partners around the world and especially from IOTA in order to develop this research in Algeria.

Thank you for your attention!

