Upgrade of the photometric telescope in Borowiec for occultation work
 + an update on Slow Rotators project

Anna Marciniak
Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Poznań, Poland

ESOP XL, 29 August 2021

Most wanted slow rotators for occultation observations

70 Panopaea	581 Tauntonia
101 Helena	657 Gunlod
215 Oenone	666 Desdemona
223 Rosa	668 Dora
269 Justitia	672 Astarte
279 Thule	688 Melanie
286 Iclea	738 Alagasta
305 Gordonia	777 Gutemberga
309 Fraternitas	806 Gyldenia
326 Tamara	814 Tauris
366 Vincentina	833 Monica
373 Melusina	838 Seraphina
395 Delia	845 Naema
397 Vienna	859 Bouzareah
412 Elisabetha	880 Herba
429 Lotis	903 Nealley
439 Ohio	907 Rhoda
464 Megaira	921 Jovita
524 Fidelio	931 Whittemora
527 Euryanthe	938 Chlosinde
541 Deborah	992 Swasey
551 Ortrud	999 Zachia
566 Stereoskopia	1062 Ljuba

IOTA/ES sub-page for „Neglected asteroids"

https://www.iota-es.de/neglected_asteroids.html

International Occultation Timing Association European Section

About us
Objects
JOA Journal \& ON
Guidelines
Partners and Friends
Members
Contact

Call for Observations

Neglected Asteroids

Astronomical Observatory Institute of Poznan, Poland is coordinating a world-wide observing campaign of somewhat neglected asteroids. These are small bodies of the main belt with slow rotation and small lightcurve amplitudes, avoided by most of previous studies [1]. The aim is to improve biased statistics of spin and shape modelled asteroids. Recent results from TESS spacecraft have shown that slow rotators are actually dominating in the population of main belt asteroids [4], while asteroids with available spin and shape model have predominantly short rotation periods.

We focus on multi-apparition photometric observations, lightcurve inversion modelling, and scaling those models with thermal infrared data [2, 3]. However, many of these asteroids have poor or problematic thermal datasets, and cannot be precisely scaled this way. This is where good, multi-chord occultation can greatly help. Occultations can also pinpoint the correct spin and shape solution from two mirror ones produced by lightcurve inversion (see e.g. Svea model fitting in paper [2]). For ones produced by lightcurve inversion (see e.g. Svea model fitting in paper [2]). For
some of our targets, marked in bold in the list, Gaia mission will provide mass, so precise density could be derived for studies on internal composition.
Please join the project and observe stellar occultations by the these asteroids, whenever possible.

List of proposed asteroids

```
70 Panopaea
215 Helena
215 Oenone
269 Justitia
269 Justit
286 Iclea
305 Gordonia
309 Fraternitas
326 Tamara
366 Vincentina
373 Melusina
395 Delia
397 Vienna 
429 Lotis
429 Lotis
464 Megaira
524 Fidelio
5 2 7 \text { Euryanthe}
541 Deborah
566 Stereoskopia
```


IOTA/ES predictions for „Neglected asteroids"

https://www.iota-es.de/pred4neglected.html

International Occultation Timing Association European Section

About us

Call for Observations

Predictions for "Neglected Asteroids"

Astronomical Observatory Institute of Poznan, Poland is coordinating a world-wide observing campalgn of somewhat neglected asteroids. These are small bodies of the main belt with slow rotation and small lightcurve amplitudes, avoided by most of previous studies [1]. The aim is to improve blased statistics of spin and shape modeled actuall l minating in the population of main belt asteroids [2] while asteroids with available spin and shape model have predominantly short rotation periods.

On this site occultation predictions for central Europe are presented in the next one or two months. All events are calculated using Gaia DR2 catalog and the best asteroid prediction available at the time of generated the prediction. The data base for the asteroid's orbit you see in the lower left corner of the graphic.

11] Marcintak et al. 2015, "Against the bias in spins and shapes of asteroids", Planet Space Sci. 118, 256; arXiv:1711.02429
[2] Pal et al. 2020 "Solar System objects observed with TESS - First data release: bright main-belt and Trojan asteroids from the Southern Survey' ApJS 247, 26; arXiv:2001.05922

More information about the "Neglected Asteroids Project" you can find here.

Occult Watcher Cloud tag for Slow Rotators

https://cloud.occultwatcher.net/campaigns

OW Cloud	Home	Events	Campaigns	Development Phases About						
Active Ad-hoc Observation Campaigns:										
			Campaign	Description					Link	Events
			Slowrotatas	Astronomical Observatory Institute of Poznan, Poland is coordinating a world-wide observing campaign of somewhat neglected asteroids with slow rotation and small lightcurve amplitudes. The aim is to improve biased statistics of spin and pinpointing the correct lightcurve inversion shape model with the help of multi-chord occultation data. The project is led by dr. Anna Marciniak -https://www.iotaes.de/neglected_asteroids.html					External Web Site	OWC Events
			Arcitomuen	A campaign to confirm the suspected moon of Arecibo. The campaign is run by Dave Gault and Peter Nosworthy who first detected the suspected moon on 19 May 2021.					External Web Site	OWC Events

Occultations by Slow Rotators observed by European observers since October 2020

Month	Predicted events	Observed events	Highlights
October 2020	12	4	657 Gunlod, negative for all 5 sites in 1-2 σ zone
			Another Gunlod event: 14 announced stations, 2 neg.
November 2020	4	1	First positive! Target: 439 Ohio
December 2020	3	2	single negatives
January 2021	13	5	618 Elfriede: 2 positives, 1 negative
			395 Delia: 1 positive
			12 announced stations for 859 Bouzareah, 1 negative
February 2021	9	4	618 Elrriede: 1 positive
			780 Armenia: 13 announced stations, 2 positives
			1062 Ljuba: 13 announced stations, 2 pos., 4 neg.
March 2021	9	2	single negatives
April 2021	5	1	556 Stereoskopia: 16 ann. stations, 7 positives, 1 neg.
May 2021	1	1	1 negative for 1062 Ljuba
June 2021	0	0	
July 2021	4	2	159 Aemilia: 29 announced stations, 8 positives, 3 neg.
August 2021	1	2	880 Herba: 2 positives

Summary: 23 events observed, 2 with multiple positive chords.

556 Stereoskopia event, 8 April 2021

159 Aemilia event, 15 July 2021

Decresse plot scale 0 nomal $5 \times 2 \times 5$
Opacily
FMSft. $0.3 \pm 22 \mathrm{~km}$
$\square \quad \frac{1}{2}(M)$ Christian Weber

Marek Zawilaki
Vaclay
givire
Priban
Le Call

362 Havnia event, 17 January 2017

Marciniak et al., Astronomy Astrophys., in print

618 Elfriede events + CITPM model

667 Denise events + CITPM model

Marciniak et al., Astronomy Astrophys., in print

Sizes of Havnia, Elfriede and Denise from occultation scaling

Target	Pole 1	Pole 2
362 Havnia	$84 \pm 1 \mathrm{~km}$	$88 \pm 1 \mathrm{~km}$
618 Elfriede	$145 \pm 7 \mathrm{~km}$	$155 \pm 2 \mathrm{~km}$
667 Denise	$83 \pm 2 \mathrm{~km}$	rejected

Table: Diameters of equivalent volume spheres for CITPM shape models fitted to stellar occultations.

Observers of Havnia, Elfriede and Denise events

(362) Havnia, 2017-01-07	
P. Maley C. Wiesenborn W. Thomas T. George	Gila Bend, AZ Boulder City, NV Florence, AZ Scottsdale, AZ
(618) Elfriede, 2008-05-26	
D. Breadsell J. Bradshaw P. Anderson	Toowoomba, Qld, AU Samford, Qld, AU Range Observatory, Qld, AU
(618) Elfriede, 2013-04-13	
D. Herald J. Drummond	Murrumbateman, NSW Patutahi, Gisborne, NZ
(618) Elfriede, 2015-12-30	
J. Rovira	ES
R. Naves	ES
C. Perello, A. Selva	ES
C. Schnabel	ES
(618) Elfriede, 2018-05-10	
J. Broughton	Woodburn, NSW, AU
J. Broughton	Grafton, NSW, AU
J. Broughton	Mullaway, NSW, AU

(667) Denise, 2008-04-08

R. Nugent G. Nason M. McCants P. Maley, D. Weber	Pontotoc, TX Tobermory, ONT, CA Kingsland, TX Horseshoe Bay, TX
S. Meister Denise, 2020-04-11	

Poznan, Poland

Poznan and Borowiec

Borowiec observing station (Astrogeodynamical Observatory, Polish Academy of Sciences)

Borowiec photometric telescope

$40-\mathrm{cm}$ Newtonian, operating since 1998. Main research topic: asteroid lightcurves.

Old camera at $40-\mathrm{cm}$ photometric telescope in Borowiec

http://www.company7.com/sbig/products/st7.html

Sensor : SBIG ST7 CCD camera with KODAK KAF400 sensor
Time source : ntp server vega.cbk.poznan.pl (NTP++), accurate to 0.02 s Mode of recording: Resolution: Medium, Vertical binning: 2, Image size: Quarter Readout time : At least 1.1 seconds

Occultations observed from Borowiec since October 2020

Month	Predicted events	Observed events	Highlights
October 2020	14	2	657 Gunlod, negative November 2252 CERGA uncertain (single frame positive) Necember 2020
5	1	18521 Chaos, negative (16.8 mag star)	
January 2021	8	3	41 Daphne, positive
February 2021	14	2	2 negatives
March 2021	9	2	2 negatives
	5	2	499 Venusia, positive

Summary: 12 events observed until the camera exchange, 2 positives.

2252 CERGA event, 21 October 2020

Star: 13.4 mag at 40 deg, dark skies, but 1.4 s exposure, and 1.5 s readout. 13% probability. Location just 3 km from the center line, but huge uncertainty (path width 24 km , sigma width 170 km).

41 Daphne event, 30 December 2020

Star: 13.2 mag, but asteroid 11.9 mag (max drop 0.3 mag). Height 33 deg, Moon up. Probability: 98\%.
1.0 s exposure, readout: 1.15 s , duration at least 10.8 s .

41 Daphne event, 30 December 2020

499 Venusia event, 1 March 2021

Star: 11.4 mag. Height: 21 deg, dark skies. Probability: 62\%. 0.15 s exposure, readout: 1.15 s , duration: 3.3s. Much lower mag drop than predicted (0.6 vs 4.1 mag), reported also by other observers.

499 Venusia event， 1 March 2021

Chalin - protected Dark Skies Reserve

New node in Global Astrophysical Telescope
(Borowiec, Winer Observatory in Arizona, Chalin)
$70-\mathrm{cm}$ main telescope + five $30-\mathrm{cm}$ auxiliary telescopes.
Main targets: variable stars and artificial satellites.

K. Kamiński

Andor Zyla 5.5 sCMOS camera

https://andor.oxinst.com/products/scmos-camera-series/zyla-5-5-scmos

5 Megapixel, $6.5 \mu \mathrm{~m}$ pixel - 22 mm diagonal
$0.9 e^{-}$read noise 60\% QE
100 fps Camera Link; 40 fps from USB 3.0

First event observed with Zyla camera

Star: 13.4 mag, max drop 8.0 mag. Height 14 deg, Moon up. Probability: 3.4%. 0.4 s exposure, readout: 0.03s, negative event.

First positive event observed with Zyla

Occultation by 5511 Cloanthus
16/17 June 2021, Borowiec

First positive event observed with Zyla

5511 Cloanthus, 16 June 2021

Star: 14.3 mag, max drop 2.7 mag. Height 29 deg, Dark skies. Probability: 90\%. 0.9 s exposure, readout: 0.01 s . Duration: $3.63+/-0.03 \mathrm{~s}$.

First positive event observed with Zyla

5511 Cloanthus fit by Christian Weber.

3566 Levitan - a border line case

Event: 23 July 2021. Telescope tracking out of order.

Star: 11.1 mag, max drop 5.9 mag. Height 10: deg, (full) Moon distace: 22 deg. Probability: 90%. Drifting field, 0.7 s exposures, readout: 0.01 s .
Probable duration: $1.42 \mathrm{~s}+/-0.90 \mathrm{~s}$.
Observers: Anna Marciniak, Iga Mieczkowska, Patrycja Poźniak, Julia Perła, Justyna Olszewska

3566 Levitan - a border line case

3566 Levitan - a border line case

AOTA lightcurve.

Analysis by Christian Weber.

3566 Levitan - a border line case

PyOTE lightcurve.

Analysis by Christian Weber.

3566 Levitan - a border line case

PyOTE event analysis.

3566 Levitan - a border line case

PyOTE histogram. Warning of possible false detection.

Analysis by Christian Weber.

All occultations observed at Borowiec since October 2020

Month	Predicted events	Observed events	Highlights
October 2020	14	2	657 Gunlod, negative
			2252 CERGA uncertain (single frame positive) November 2020
December 2020	8	1	18521 Chaos, negative (16.8 mag star)
January 2021	14	3	41 Daphne, positive
February 2021	9	2	2 negatives
March 2021	5	2	2 negatives
Aprl2021	(1)	2	499 Venusia, positive
May 2021	5	0	
June 2021	10	1	2002 AL134, negative
July 2021	9	3	5511 Cloanthus, positive, + 2 other negative events
August 2021	4	1	3566 Levitan, uncertain (difficult conditions)

Summary: 5 events observed after the camera exchange, 1 positive. In all: 17 observed events, 3 positives.

Summary

- Slow rotators campaign now on IOTA/ES websites and with own OW tag.
- Please follow and join the campaigns!
- 23 events observed since October 2020 across Europe, 2 with multiple positive chords.
- Meanwhile 3 slow rotators scaled by archival occultations (A\&A paper upcoming).
- Observations from Borowiec site: all interesting (and feasible) occultation events.
- Switch from SBIG ST7 CCD camera to Andor Zyla 5.5 sCMOS in Spring 2021.
- Readout time decreased from 1.1 seconds to 0.01 second!
- Slight decrease in sensitivity.
- First results promising (even without telescope tracking...)
- New occultation observing site: Chalin (30-cm telescopes with Zyla 5.5 cameras)

Special thanks to:

Krzysztof Kamiński
Jakub Tokarek
Roman Hirsch
Wojciech Dimitrow

Wolfgang Beisker Christian Weber
Hristo Pavlov

